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Abstract The use of Slater type orbitals in molecular calculations is hindered by
the slowness of integral evaluation. In the present paper, we introduce a method for
overcoming this problem by expanding STO’s in terms of Coulomb Sturmians, for
which the problem of evaluating molecular integrals rapidly has been satisfactorily
solved using methods based on the theory of hyperspherical harmonics.

Keywords Slater type orbitals · STO molecular integrals · Coulomb Sturmians ·
Hyperspherical harmonics · Electronic structure theory · Molecular Coulomb
Sturmians

1 Introduction

In recent years, much attention has been focused on the problem of evaluating mole-
cular integrals with exponential type orbitals. This is because ETOs are intrinsically
better suited to the synthesis of electronic wave functions than Gaussians, which are
currently used in most quantum chemistry calculations. In fact, the only reason why
Gaussians have until now dominated computational quantum chemistry is the ease with
which the required many-center integrals can be calculated. However, rapid methods
for calculating these integrals for ETOs are being developed, making way for a new
wave in quantum chemistry.
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A general and simple form of the ETO is the Slater type orbital [1], which forms
the basis for a wide variety of quantum chemical calculations. Before explaining
the approach of the present paper, we would like to mention some of the important
historical and recent development in STO integral evaluation. Pioneering work was
done by Harris et al. [2]. While most quantum chemistry software is based on Gaussian
orbitals, a number of software packages have been developed for quantum chemistry
calculations using STOs, the most prominent being the STOP package [3], developed
by Philip Hoggan et al., SMILES, developed by Fernandez Rico et al. [4] at Universidad
Autónoma de Madrid, and ADF [5], by Baerends and Snijders in Amsterdam.

Hoggan [6] has recently been working with applications of the resolution of the
Coulomb operator, a technique first introduced by Gill and his associates [7,8]. The
results for solving the difficult molecular integrals by this method seem very promising.
Levin and Sidi [9,10] have contributed importantly to Fourier transform methods, by
developing methods for the accurate evaluation of highly oscillatory integrals involving
spherical Bessel functions.

In the present paper we build on our previous work on Coulomb Sturmians and
their Fourier transforms. In a remarkable early paper, V. Fock introduced a projection
of momentum space onto the surface of the 4-dimensional unit sphere, and showed
that the Fourier transformed Coulomb Sturmians are very simply related to the hyper-
spherical harmonics on this sphere. In our previous work [11], we have shown that
molecular integrals for Coulomb Sturmians can be rapidly evaluated using the theory
of hyperspherical harmonics.

In the present paper, we begin the work of extending this method to molecular
integrals for Slater type orbitals by expanding them in terms of Coulomb Sturmians.
Here, we only do the molecular overlap integrals, but all the remaining integrals follow
in a similar way, and will be described in a later paper. In order to avoid overloading the
reader with unfamiliar concepts, we do not describe in detail the methods employed
for evaluating molecular integrals using the hyperspherical method, but we refer to
our previous books and papers on the subject [12–20].

2 Definition of Coulomb Sturmians

Coulomb Sturmians are solutions to the one-electron wave equation [21,15,22–24]:

[
−1

2
∇2 − nk

r
+ 1

2
k2

]
χnlm(x) = 0 (1)

The reader will recognize that this is just the wave equation obeyed by the familiar
hydrogenlike orbitals, except that Z/n has been replaced by the constant k. Thus, if we
start with a set of hydrogenlike orbitals and replace Z/n everywhere by the constant
k, we will have generated a set of Coulomb Sturmians. They have the form

χnlm(x) = Rnl(r)Ylm(θ, φ) (2)
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where the radial functions are given by

Rnl(r) = N nl(2kr)l e−kr F(l + 1 − n|2l + 2|2kr) (3)

with

Nnl = 2k3/2

(2l + 1)!

√
(l + n)!

n(n − l − 1)! (4)

and

F(a|b|x) ≡
∞∑
j=0

a j

j !b j
x j = 1 + a

b
x + a(a + 1)

2b(b + 1)
x2 + · · · (5)

is the confluent hypergeometric function of the first kind. Notice that the series in (5)
only sums up to n − l −1 in our case. The first few Coulomb Sturmian radial functions
are

R1,0(r) = 2k3/2e−kr

R2,0(r) = 2k3/2(1 − kr)e−kr

R2,1(r) = 2k3/2

√
3

kr e−kr (6)

These become the familiar hydrogenlike orbitals if k is replaced by Z/n, where Z is
the nuclear charge and n is the principal quantum number. It can be shown that the
Coulomb Sturmians obey a set of potential-weighted orthonormality relations of the
form:

∫
d3x χ∗

n′l ′m′(x)
n

kr
χnlm(x) = δn′nδl ′lδm′m (7)

A Coulomb Sturmian basis set is isoenergetic. All the members of the set correspond
to the energy

ε = −1

2
k2 (8)

The potential in the wave equation obeyed by the members of the basis set is especially
weighted so that all the basis functions will correspond to this energy. We can rewrite
Eq. (1) in the form

[
−1

2
∇2 − βn

Z

r
+ 1

2
k2

]
χnlm(x) = 0 (9)

where the weighting factor βn = nk/Z is especially chosen in such a way as to make
all the members of the basis set correspond to the energy −k2/2.
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3 Definition of STO’s

Slater-Type Orbitals have a radial part of the form [25]:

Rn,ζ (r) = Nn,ζ rn−1e−ζr (10)

where Nn,ζ is a normalizing constant:

Nn,ζ = (2ζ )n

√
2ζ

(2n)! = (2ζ )n+ 1
2√

(2n)! (11)

It is common to use spherical harmonics as the angular parts of STO’s. Thus we can
write:

	n,ζ,l,m(x) = Rnζ (r)Yl,m(x̂) ≡ 	μ̄(x) (12)

where

μ̄ ≡ (n, ζ, l, m) (13)

(Although STO’s are often denoted by the symbol χ , we denote them here by 	 in
order to distinguish them from Coulomb Sturmians, which we have consistently called
χ in our books and papers.)

4 Expansion of an arbitrary function of s = kr in terms of Coulomb Sturmian
radial functions

Why is it not trivial to expand STO’s in terms of Coulomb Sturmians? Why not just
let k = ζ? The reason is that for the hyperspherical method to work, k must be the
same for all the Sturmian orbitals involved in the integral. But in general, the molecular
integrals that we wish to evaluate involve several values of ζ on different centers. Thus,
in general, k will not be equal to ζ , and therefore the expansion is not a trivial one.

Let us first discuss how to expand an arbitrary function of s = kr in terms of
Coulomb Sturmian radial functions. It follows from Eqs. (3)–(6) that if we divide the

radial parts of Coulomb Sturmians by a factor of k
3
2 we will obtain a function

R̃n,l(s) ≡ 1

k
3
2

Rn,l(r) (14)

which is a pure function of s = kr . For example,

R̃1,0(s) = 2e−s

R̃2,0(s) = 2(1 − s)e−s

R̃2,1(s) = 2√
3

s e−s (15)
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and so on. From the potential-weighted orthonormality relation (7), it then follows
that

∞∫
0

ds s R̃n′,l(s)R̃n,l(s) = 1

n
δn′n (16)

Now suppose that we wish to expand a function f (s) in a series of the form:

f (s) =
∑
n>l

R̃n,l(s) cn (17)

In Eqs. (18)–(29), the symbol cn retains this meaning: It is the coefficient corresponding
to n in the expansion of some function of s in terms of Coulomb Sturmian radial
functions. But the functions being expanded differ in the various equations. Making
use of the orthonormality relation (7), we obtain

n

∞∫
0

ds s R̃n,l(s) f (s) =
∑
n′>l

∫ ∞

0
ds s R̃n′,l(s)R̃n,l(s) cn′

=
∑
n′>l

δn′,ncn′ = cn (18)

Thus, for example, in the series

e−ρs =
∑

n

R̃n,0(s) cn (19)

the coefficients cn are given by

cn = n
∫ ∞

0
ds s R̃n,0(s) e−ρs (20)

We can evaluate this integral exactly, for example using Mathematica [26], and the
surprisingly simple result is

cn = n

∞∫
0

ds s R̃n,0(s) e−ρs = 2n
(ρ − 1)n−1

(ρ + 1)n+1 (21)

From (18) and (21), it follows that the coefficients cn in the series

s j e−ρs =
∑
n>0

R̃n,0(s) cn (22)
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Fig. 1 The coefficients cn of Eq. (19) are plotted as functions of the parameter ρ in the range 1 < ρ < 4.
When ρ = 1, only c1 is nonzero. As ρ increases above 1, more and more coefficients contribute significantly
to the series in Eq. (19)

are given by

cn = n

(
− ∂

∂ρ

) j ∞∫
0

ds s R̃n,0(s) e−ρs = 2n

(
− ∂

∂ρ

) j
(ρ − 1)n−1

(ρ + 1)n+1 (23)

The completeness properties of the Coulomb Sturmians are such that the series
defined by Eqs. (22) and (23) are exact for the full, infinite sum, regardless of the
non-negative integer value of j and of ρ > 0. Our pilot calculations show that when
1/4 < ρ < 4, and for moderate values of j , convergence is rapid (see Figs. 1 and
2). Convergence of the series becomes progressively less rapid as j increases, and for
values of ρ outside the range just mentioned.

If we make an expansion in terms of Coulomb Sturmian radial functions corre-
sponding to l = 1, i.e. an expansion of the form

se−ρs =
∑
n>1

R̃n,1(s) cn (24)

we again obtain a simple result for the expansion coefficients:

cn = n

∞∫
0

ds s R̃n,1(s) se−ρs = 4n
√

(n − 1)(n + 1)
(ρ − 1)n−2

(ρ + 1)n+2 (25)

and we can again write down equations analogous to (22) and (23):

s j+1 e−ρs =
∑
n>1

R̃n,1(s) cn (26)
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Fig. 2 This figure is the same as Fig. 1, except that the coefficients cn are shown in the range 1/4 < ρ < 1.
The series in (19) converges for all real and positive values of ρ. The rate of convergence can be judged in
the two figures by the number of coefficients markedly different from zero

cn = n

(
− ∂

∂ρ

) j ∞∫
0

ds s R̃n,1(s) se−ρs

= 4n
√

(n − 1)(n + 1)

(
− ∂

∂ρ

) j
(ρ − 1)n−2

(ρ + 1)n+2 (27)

Similarly simple and rapidly-convergent series are obtained when we expand in terms
of R̃n,l(s) for higher values of l. In general we find that the expansion

s j+l e−ρs =
∑
n>l

R̃n,l(s) cn (28)

leads to expansion coefficients of the form

cn = n

(
− ∂

∂ρ

) j ∞∫
0

ds s R̃n,l(s) sle−ρs = an,l

(
− ∂

∂ρ

) j
(ρ − 1)n−l−1

(ρ + 1)n+l+1 (29)

Table 1 shows the first few coefficients an,l for l = 2, 3, 4 and n = 3, 4, . . . , 10.
an,0 = 2n, while for an,1 = 4n

√
(n − 1)(n + 1). Higher coefficients are easy to

obtain, since the integral in Eq. (29) can readily be evaluated by Mathematica. It
seems that a closed form formula exists, but we have not yet found it.

5 Evaluation of molecular integrals

This expansion allows us to apply to STO’s our previously-developed methods for the
evaluation of molecular integrals by means of the theory of hyperspherical harmonics.
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Table 1 The coefficients an,l of
Eq. (29). an,0 = 2n, while
an,1 = 4n

√
(n − 1)(n + 1)

n l = 2 l = 3 l = 4

3 48
√

10

4 192
√

5 384
√

35

5 240
√

14 1,920
√

14 11,520
√

14

6 192
√

70 1,152
√

210 23,040
√

42

7 625
√

15 13,440
√

6 80,640
√

22

8 384
√

105 3,840
√

231 92,160
√

77

9 288
√

385 3,456
√

770 34,560
√

2002

10 960
√

66 1,920
√

6, 006 161,280
√

286

We can evaluate the coefficients Cn,n1 by writing the STO radial function on the form:

Rn1,ζ1(r) = Nn1,ζ1 rn1−1e−ζ1r

= (2ζ1)
n1+ 1

2√
(2n1)! rn1−1e−ζ1r

= (2ζ1)
n1+ 1

2

kn1−1
√

(2n1)! sn1−1e−ρ1s s ≡ kr k ≡ √
ζ1ζ2

= k3/2 (2ρ1)
n1+ 1

2√
(2n1)! sn1−1e−ρ1s ρ1 ≡ ζ1

k
≡

√
ζ1

ζ2
(30)

When the STO radial function is expanded in terms of Coulomb Sturmian radial
functions in a series of the form:

Rn1,ζ1(r) = k3/2
∑
n>l1

R̃n,l1(s) C (l1,ρ1)
n,n1

s ≡ kr

Rn2,ζ2(r) = k3/2
∑
n>l2

R̃n,l2(s) C (l2,ρ2)
n,n2

(31)

we can write the expansion as

(2ρ1)
n1+ 1

2√
(2n1)! sn1−1e−ρ1s =

∑
n>l1

R̃n,l1(s) C (l1,ρ1)
n,n1

(32)

Comparing this with Eqs. (28) and (29), we can see that we need to make the identi-
fication j = n1 − l1 − 1, and that

C (l1,ρ1)
n,n1

= an,l1
(2ρ1)

n1+ 1
2√

(2n1)!
(

− ∂

∂ρ1

)n1−l1−1
(ρ1 − 1)n−l1−1

(ρ1 + 1)n+l1+1 ρ1 ≡ ζ1

k
≡

√
ζ1

ζ2

(33)
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and similarly,

C (l2,ρ2)
n,n2

= an,l2
(2ρ2)

n2+ 1
2√

(2n2)!
(

− ∂

∂ρ2

)n2−l2−1
(ρ2 − 1)n−l2−1

(ρ2 + 1)n+l2+1 ρ2 ≡ ζ2

k
≡

√
ζ2

ζ1

(34)

Equation (31) sums over infinitely many values of n, but in practice will be truncated
and thus not an identity but an approximation. However, as shown in Figures 1 and 2,
the convergence is rapid in the indicated range. The following table shows the L2-error

||Rexact − Rapprox || =
⎛
⎝

∞∫
0

(Rexact (r) − Rapprox (r))2 dr

⎞
⎠

1/2

(35)

for the synthesis of Slater 3d-orbitals by Eq. (31) as a function of ρ, using 30 Coulomb
Sturmians in the expansion:

ρ1 1 3/2 2 5/2 3 7/2 4

L2-error 0 3.0 × 10−19 1.5 × 10−12 2.9 × 10−9 2.9 × 10−7 6.6 × 10−6 6.3 × 10−5

6 STO overlap integrals

From Eqs. (12) and (31) we have

	μ̄1(x − X1) =
∑
n>l1

χn,l1,m1(x − X1)C
(l1,ζ1)
n,n1

	μ̄2(x − X2) =
∑
n>l2

χn,l2,m2(x − X2)C
(l2,ζ2)
n,n2

(36)

Therefore the STO overlap integral can be written as

∫
d3x 	∗̄

μ1
(x − X1)	μ̄2(x − X2)

=
∑
n′>l1

∑
n>l2

C (l1,ρ1)

n′,n1
C (l2,ρ2)

n,n2

∫
d3x χ∗

n′,l1,m1
(x − X1)χn,l2,m2(x − X2) (37)

Since we are able to evaluate overlap integrals between Coulomb Sturmians rapidly,
and in closed form, by using a method based on the theory of hyperspherical harmonics
[11]–[17], this gives us a rapid and accurate method for evaluating STO overlap inte-
grals. The Coulomb Sturmian overlap matrix m(S) is precalculated, and is the same
regardless of which Slater type orbitals enter the computation. The coefficients C (l,ρ)

n′,n
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Fig. 3 Overlap integrals for STO 1s orbitals. The overlap integrals are shown as functions of the parameter
S = √

ζ1ζ2 |X1 − X2|. The top curve shows the case where ζ1 = ζ2, which is exact. The next four curves
show the cases where

√
ζ1/ζ2 is 3/2, 2, 3, and 4. The dots at S = 2 were calculated with three-dimensional

numerical integrals. The numerical integrals were calculated with 8–10 significant digits, and agreed with
the calculated curves up to that precision

are pre-evaluated and stored as functions of ρ; for a particular STO calculation, they

are instantiated with the particular ρ =
√

ζ1
ζ2

required for the computation. Examples
are shown in Figs. 3 and 4. This requires only evaluating a very small polynomial
in ρ and one division per coefficient. Equation (37) can be written on the form of a
matrix-vector product and a dot product

cμ1 · (Mcμ2) (38)

Thus, computing all overlap integrals requires us to perform one small matrix-vector
product for each STO basis function, and for each integral only the final dot-product is
needed. Our current implementation is not yet optimized and ready for benchmarking,
but we expect similar performance to the results presented in Ref. [11]. There, tens to
few hundreds nanoseconds were required per multicentre electron repulsion integral
on current consumer hardware, which is comparable to the efficiency of Gaussian type
orbitals.

7 Discussion

In this paper we have presented a method for the evaluation of overlap integrals
involving Slater-type orbitals. The method works extremely rapidly, with an accu-
racy of at least 8 significant figures, provided that the Slater exponents fall into the
range

1

4
< ρ < 4, ρ ≡

√
ζ1

ζ2
(39)
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2 4 6 8 10 12 14
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0.1

0.2

0.3

0.4

Fig. 4 STO overlap integrals between 1s and 3d orbitals (with m = 0) shown with the same parameters as
in Fig. 3. The displacement is in the z-direction. As before, the overlap integrals are correct at least up to
8–10 digits, which is the number of significant digits in the numerically calculated integrals

or

1

16
<

ζ1

ζ2
< 16 (40)

The calculation of kinetic energy integrals and nuclear attraction integrals goes through
in a closely analogous manner, as we plan to discuss in a future paper. Finally, we plan
to show in a future article that interelectron repulsion integrals involving STO’s can
also be treated by expanding the STO’s in terms of Coulomb Sturmians and afterwards
making use of Fock’s projection and the theory of hyperspherical harmonics to evaluate
the 2-electron integrals.
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